Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.330
Filtrar
1.
Heliyon ; 10(7): e27857, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38560260

RESUMO

Groundwater is a significant water resource for drinking and irrigation in Satkhira district, Bangladesh. The depletion of groundwater resources and deterioration in its quality are the results of the confluence of factors such as industrialization, intensive irrigation, and rapid population growth. For this reason, this study focused on the evaluation of tubewell water of six unions of Kaligonj upazila in Satkhira district, which is situated in the coastal southwest part of Bangladesh. Major and trace elemental concentrations were assimilated into positive matrix factorization (PMF) to identify potential sources and their respective contributions. Principal component analysis (PCA) revealed that groundwater salinization and manmade activities were the primary causes of heavy metals in the coastal groundwater. Its average pH value was found to be 7.5, while Dissolved oxygen, Total dissolved solids, salinity, and conductivity, with values ranging from 1.18 to 7.38 mg/L, 0.5-4.88 g/L, 0.4-5%, and 0.95 to 8.56 mS/cm, respectively. The total hardness average value was 561.7 mg/L, classified into the very hard water categories, which is why 90% of the tubewell water samples were unfit for household purposes. All samples had an excessive level of arsenic present. The iron concentration of fifteen (15) samples crossed the standard limit according to WHO 2011 value. Around 63% of the samples were of the Na+-K+-Cl--SO42- type, and about 72% were sodium-potassium and alkali types. 98% of samples were covered in chloride and bicarbonate. The findings showed that 45.83% of the groundwater samples had negative Chloroalkaline index (CAIs), while 54.16% had positive. The permeability index (PI) was an average of 73%, and residual sodium carbonate (RSC) averaged 260.2 mg/L, and the findings clearly showed that 80% of the samples weren't appropriate for irrigation. According to the sodium adsorption ratio (SAR) value, 65% of the samples fell into the unsuitable category. These calculations indicated a high overall salinity hazard in the study area, which may be caused by the intrusion of sea water given that the study area is close to the coastal region. Findings compared to standards revealed that the majority of the samples were deemed unfit for drinking and irrigation purposes. Hence, additional attention must be paid to this area to ensure the availability of drinkable water and to preserve sustainable farming practices.

2.
Front Microbiol ; 15: 1342331, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562478

RESUMO

In agricultural environments, plants are often exposed to abiotic stresses including temperature extremes, salt stress, drought, and heavy metal soil contamination, which leads to significant economic losses worldwide. Especially salt stress and drought pose serious challenges since they induce ionic toxicity, osmotic stress, and oxidative stress in plants. A potential solution can be the application of bacteria of the Serratia spp. known to promote plant growth under normal conditions Thus the mini-review aims to summarize the current knowledge on plant growth promotion by Serratia spp. (under the conditions of salinity stress, drought, and nutrient deficit) and highlight areas for development in the field. So far, it has been proven that Serratia spp. strains exhibit a variety of traits contributing to enhanced plant growth and stress tolerance, such as phytohormone production, ACC deaminase activity, nitrogen fixation, P and Zn solubilization, antioxidant properties improvement, and modulation of gene expression. Nevertheless, further research on Serratia spp. is needed, especially on two subjects: elucidating its mechanisms of action on plants at the molecular level and the effects of Serratia spp. on the indigenous soil and plant microbiota and, particularly, the rhizosphere. In both cases, it is advisable to use omics techniques to gain in-depth insights into the issues. Additionally, some strains of Serratia spp. may be phytopathogens, therefore studies to rule out this possibility are recommended prior to field trials. It is believed that by improving said knowledge the potential of Serratia spp. to stimulate plant growth will increase and strains from the genus will serve as an eco-friendly biofertilizer in sustainable agriculture more often.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38565821

RESUMO

Fluoride and its constituents in soil affect plant growth and public health. In this study, soil fluoride was measured for the semi-arid regions in southern India, using Sentinel-1 data in conjunction with the dual polarimetric saline-associated fluoride model (also known as fluoride model). A loss angle was estimated from laboratory-based dielectric components of soil samples with strong electrical conductivity under high and low fluoride conditions. The conductivity loss angle and real and imaginary dielectric constants were used to study fluoride salt's dielectric behavior. The imaginary dielectric component sensitive to dielectric loss could predict fluoride across large areas over time. This was statistically analyzed with R2 = 0.86, RMSE = 1.90, and bias = 0.35 showing a promising depiction that C-band SAR data can distinguish fluoride levels over varied clay soil and soil with varying vegetation development. Moreover, the association between biomass and simulated fluoride helped to identify fluoride-tolerant and non-tolerant crops. The study found that Sorghum and Oryza sativa tolerate saline-associated fluoride, whereas Peanut and Allium do not. Furthermore, the model successfully retrieves fluoride from saline salts based on tangent loss.

4.
Plant Cell Environ ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558078

RESUMO

Cell wall is involved in plant growth and plays pivotal roles in plant adaptation to environmental stresses. Cell wall remodelling may be crucial to salt adaptation in the euhalophyte Salicornia europaea. However, the mechanism underlying this process is still unclear. Here, full-length transcriptome indicated cell wall-related genes were comprehensively regulated under salinity. The morphology and cell wall components in S. europaea shoot were largely modified under salinity. Through the weighted gene co-expression network analysis, SeXTH2 encoding xyloglucan endotransglucosylase/hydrolases, and two SeLACs encoding laccases were focused. Meanwhile, SeEXPB was focused according to expansin activity and the expression profiling. Function analysis in Arabidopsis validated the functions of these genes in enhancing salt tolerance. SeXTH2 and SeEXPB overexpression led to larger cells and leaves with hemicellulose and pectin content alteration. SeLAC1 and SeLAC2 overexpression led to more xylem vessels, increased secondary cell wall thickness and lignin content. Notably, SeXTH2 transgenic rice exhibited enhanced salt tolerance and higher grain yield. Altogether, these genes may function in the succulence and lignification process in S. europaea. This work throws light on the regulatory mechanism of cell wall remodelling in S. europaea under salinity and provides potential strategies for improving crop salt tolerance and yields.

5.
Sci Rep ; 14(1): 7762, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565529

RESUMO

Groundwater is an excellent alternative to freshwater for drinking, irrigation, and developing arid regions. Agricultural, commercial, industrial, residential, and municipal activities may affect groundwater quantity and quality. Therefore, we aimed to use advanced methods/techniques to monitor the piezometric levels and collect groundwater samples to test their physicochemical and biological characteristics. Our results using software programs showed two main types of groundwater: the most prevalent was the Na-Cl type, which accounts for 94% of the groundwater samples, whereas the Mg-Cl type was found in 6% of samples only. In general, the hydraulic gradient values, ranging from medium to low, could be attributed to the slow movement of groundwater. Salinity distribution in groundwater maps varied between 238 and 1350 mg L-1. Although lower salinity values were observed in northwestern wells, higher values were recorded in southern ones. The collected seventeen water samples exhibited brackish characteristics and were subjected to microbial growth monitoring. Sample WD12 had the lowest total bacterial count (TBC) of 4.8 ± 0.9 colony forming unit (CFU mg L-1), while WD14 had the highest TBC (7.5 ± 0.5 CFU mg L-1). None of the tested water samples, however, contained pathogenic microorganisms. In conclusion, the current simulation models for groundwater drawdown of the Quaternary aquifer system predict a considerable drawdown of water levels over the next 10, 20, and 30 years with the continuous development of the region.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Monitoramento Ambiental/métodos , Sistemas de Informação Geográfica , Água Subterrânea/química , Poços de Água , Água , Qualidade da Água , Poluentes Químicos da Água/análise
6.
Front Microbiol ; 15: 1356977, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572231

RESUMO

Introduction: Heterotrophic protists colonizing microbial mats have received little attention over the last few years, despite their importance in microbial food webs. A significant challenge originates from the fact that many protists remain uncultivable and their functions remain poorly understood. Methods: Metabarcoding studies of protists in microbial mats across high-altitude lagoons of different salinities (4.3-34 practical salinity units) were carried out to provide insights into their vertical stratification at the millimeter scale. DNA and cDNA were analyzed for selected stations. Results: Sequence variants classified as the amoeboid rhizarian Rhogostoma and the ciliate Euplotes were found to be common members of the heterotrophic protist communities. They were accompanied by diatoms and kinetoplastids. Correlation analyses point to the salinity of the water column as a main driver influencing the structure of the protist communities at the five studied microbial mats. The active part of the protist communities was detected to be higher at lower salinities (<20 practical salinity units). Discussion: We found a restricted overlap of the protist community between the different microbial mats indicating the uniqueness of these different aquatic habitats. On the other hand, the dominating genotypes present in metabarcoding were similar and could be isolated and sequenced in comparative studies (Rhogostoma, Euplotes, Neobodo). Our results provide a snapshot of the unculturable protist diversity thriving the benthic zone of five athalossohaline lagoons across the Andean plateau.

7.
Appl Environ Microbiol ; : e0014524, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578096

RESUMO

The bacterium Natranaerobius thermophilus is an extremely halophilic alkalithermophile that can thrive under conditions of high salinity (3.3-3.9 M Na+), alkaline pH (9.5), and elevated temperature (53°C). To understand the molecular mechanisms of salt adaptation in N. thermophilus, it is essential to investigate the protein, mRNA, and key metabolite levels on a molecular basis. Based on proteome profiling of N. thermophilus under 3.1, 3.7, and 4.3 M Na+ conditions compared to 2.5 M Na+ condition, we discovered that a hybrid strategy, combining the "compatible solute" and "salt-in" mechanisms, was utilized for osmotic adjustment dur ing the long-term salinity adaptation of N. thermophilus. The mRNA level of key proteins and the intracellular content of compatible solutes and K+ support this conclusion. Specifically, N. thermophilus employs the glycine betaine ABC transporters (Opu and ProU families), Na+/solute symporters (SSS family), and glutamate and proline synthesis pathways to adapt to high salinity. The intracellular content of compatible solutes, including glycine betaine, glutamate, and proline, increases with rising salinity levels in N. thermophilus. Additionally, the upregulation of Na+/ K+/ H+ transporters facilitates the maintenance of intracellular K+ concentration, ensuring cellular ion homeostasis under varying salinities. Furthermore, N. thermophilus exhibits cytoplasmic acidification in response to high Na+ concentrations. The median isoelectric points of the upregulated proteins decrease with increasing salinity. Amino acid metabolism, carbohydrate and energy metabolism, membrane transport, and bacterial chemotaxis activities contribute to the adaptability of N. thermophilus under high salt stress. This study provides new data that support further elucidating the complex adaptation mechanisms of N. thermophilus under multiple extremes.IMPORTANCEThis study represents the first report of simultaneous utilization of two salt adaptation mechanisms within the Clostridia class in response to long-term salinity stress.

8.
Microbiol Res ; 284: 127708, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38599021

RESUMO

Climate change intensifies soil salinization and jeopardizes the development of crops worldwide. The accumulation of salts in plant tissue activates the defense system and triggers ethylene production thus restricting cell division. We hypothesize that the inoculation of plant growth-promoting bacteria (PGPB) producing ACC (1-aminocyclopropane-1-carboxylate) deaminase favors the development of arbuscular mycorrhizal fungi (AMF), promoting the growth of maize plants under saline stress. We investigated the efficacy of individual inoculation of PGPB, which produce ACC deaminase, as well as the co-inoculation of PGPB with Rhizophagus clarus on maize plant growth subjected to saline stress. The isolates were acquired from the bulk and rhizospheric soil of Mimosa bimucronata (DC.) Kuntze in a temporary pond located in Pernambuco State, Brazil. In the first greenhouse experiment, 10 halophilic PGPB were inoculated into maize at 0, 40 and 80 mM of NaCl, and in the second experiment, the PGPB that showed the best performance were co-inoculated with R. clarus in maize under the same conditions as in the first experiment. Individual PGPB inoculation benefited the number of leaves, stem diameter, root and shoot dry mass, and the photosynthetic pigments. Inoculation with PGPB 28-10 Pseudarthrobacter enclensis, 24-1 P. enclensis and 52 P. chlorophenolicus increased the chlorophyll a content by 138%, 171%, and 324% at 0, 40 and 80 mM NaCl, respectively, comparing to the non-inoculated control. We also highlight that the inoculation of PGPB 28-10, 28-7 Arthrobacter sp. and 52 increased the content of chlorophyll b by 72%, 98%, and 280% and carotenoids by 82%, 98%, and 290% at 0, 40 and 80 mM of NaCl, respectively. Co-inoculation with PGPB 28-7, 46-1 Leclercia tamurae, 70 Artrobacter sp., and 79-1 Micrococcus endophyticus significantly increased the rate of mycorrhizal colonization by roughly 50%. Furthermore, co-inoculation promoted a decrease in the accumulation of Na and K extracted from plant tissue, with an increase in salt concentration, from 40 mM to 80 mM, also favoring the establishment and development of R. clarus. In addition, co-inoculation of these PGPB with R. clarus promoted maize growth and increased plant biomass through osmoregulation and protection of the photosynthetic apparatus. The tripartite symbiosis (plant-fungus-bacterium) is likely to reprogram metabolic pathways that improve maize growth and crop yield, suggesting that the AMF-PGPB consortium can minimize damages caused by saline stress.

9.
Conserv Physiol ; 12(1): coae011, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38584988

RESUMO

The amount of time that juvenile salmon remain in an estuary varies among and within populations, with some individuals passing through their estuary in hours while others remain in the estuary for several months. Underlying differences in individual physiological condition, such as body size, stored energy and osmoregulatory function, could drive individual variation in the selection of estuary habitat. Here we investigated the role of variation in physiological condition on the selection of estuarine and ocean habitat by sockeye salmon (Oncorhynchus nerka) smolts intercepted at the initiation of their 650-km downstream migration from Chilko Lake, Fraser River, British Columbia (BC). Behavioural salinity preference experiments were conducted on unfed smolts held in fresh water at three time intervals during their downstream migration period, representing the stage of migration at lake-exit, and the expected timing for estuary-entry and ocean-entry (0, 1 and 3 weeks after lake-exit, respectively). In general, salinity preference behaviour varied across the three time periods consistent with expected transition from river to estuary to ocean. Further, individual physiological condition did influence habitat choice. Smolt condition factor (K) and energy density were positively correlated with salinity preference behaviour in the estuary and ocean outmigration stages, but not at lake-exit. Our results suggest that smolt physiological condition upon reaching the estuary could influence migratory behaviour and habitat selection. This provides evidence on the temporally dependent interplay of physiology, behaviour and migration in wild juvenile Pacific salmon, with juvenile rearing conditions influencing smolt energetic status, which in turn influences habitat choice during downstream migration. The implication for the conservation of migratory species is that the relative importance of stopover habitats may vary as a function of initial condition.

10.
Funct Integr Genomics ; 24(2): 74, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38600306

RESUMO

Crop production is increasingly threatened by the escalating weather events and rising temperatures associated with global climate change. Plants have evolved adaptive mechanisms, including stress memory, to cope with abiotic stresses such as heat, drought, and salinity. Stress memory involves priming, where plants remember prior stress exposures, providing enhanced responses to subsequent stress events. Stress memory can manifest as somatic, intergenerational, or transgenerational memory, persisting for different durations. The chromatin, a central regulator of gene expression, undergoes modifications like DNA acetylation, methylation, and histone variations in response to abiotic stress. Histone modifications, such as H3K4me3 and acetylation, play crucial roles in regulating gene expression. Abiotic stresses like drought and salinity are significant challenges to crop production, leading to yield reductions. Plant responses to stress involve strategies like escape, avoidance, and tolerance, each influencing growth stages differently. Soil salinity affects plant growth by disrupting water potential, causing ion toxicity, and inhibiting nutrient uptake. Understanding plant responses to these stresses requires insights into histone-mediated modifications, chromatin remodeling, and the role of small RNAs in stress memory. Histone-mediated modifications, including acetylation and methylation, contribute to epigenetic stress memory, influencing plant adaptation to environmental stressors. Chromatin remodeling play a crucial role in abiotic stress responses, affecting the expression of stress-related genes. Small RNAs; miRNAs and siRNAs, participate in stress memory pathways by guiding DNA methylation and histone modifications. The interplay of these epigenetic mechanisms helps plants adapt to recurring stress events and enhance their resilience. In conclusion, unraveling the epigenetic mechanisms in plant responses to abiotic stresses provides valuable insights for developing resilient agricultural techniques. Understanding how plants utilize stress memory, histone modifications, chromatin remodeling, and small RNAs is crucial for designing strategies to mitigate the impact of climate change on crop production and global food security.


Assuntos
Regulação da Expressão Gênica de Plantas , Histonas , Histonas/genética , Histonas/metabolismo , Plantas/genética , Metilação de DNA , Estresse Fisiológico/genética
11.
J Hazard Mater ; 471: 134318, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38643582

RESUMO

Reactive chlorine species (RCS) are inevitably generated in electrochemical oxidation process for treating high-salinity industrial wastewater, thereby resulting in the competition with coexisting hydroxyl radicals (•OH) for oxidizing recalcitrant organic compounds. Due to the low redox potentials compared to •OH, the role of RCS has been often overlooked. In this work, we developed an electroactive membrane filtration (EMF) system that had a high removal efficiency (99.1 ± 0.5 %) for tetrabromobisphenol S (TBBPS) at low energy consumption (1.45 kWh m-3). Electron spin resonance spectroscopy and molecular probing tests indicated the predominance of Cl2•-, of which steady-state concentration (2.2 ×10-10 M) was extremely higher than those of ClO• (6.7 ×10-13 M), •OH (0.95 ×10-13 M), and Cl• (2.39 ×10-15 M). The density functional theory (DFT) and intermediate product analysis highlighted that Cl2•- radicals had a higher electrophilic attack efficacy than •OH radicals for inducing changes in the electron density of the carbon atoms around phenolic hydroxyl groups, thus leading to the generation of transition state intermediates and accelerating the degradation of TBBPS. Our work demonstrates the vital role of Cl2•- radicals for pollutant degradation, highlighting the potential of this technology for cost-effective removal of recalcitrant organic compounds from water and wastewater.

12.
Artigo em Inglês | MEDLINE | ID: mdl-38625474

RESUMO

Salinity stress significantly constrains agricultural productivity and vegetation decline worldwide, particularly in Iran. Potassium, the second most prevalent nutrient in plants, is well known to be essential for cell metabolism. Here, the effects of potassium fertilizer in two biogenic nanoparticles (K-NPs) and conventional (potassium sulfate) forms (0.1 mg/ml) on Melissa officinalis L. under salinity (0, 50, 100, and 150 mM) were investigated. The results demonstrated that stress markers (electrolyte leakage, malondialdehyde, and hydrogen peroxide) increased as salinity levels increased. Plant growth parameters (shoot and root length, fresh and dry weight of shoot and root) and physiological and photosynthetic parameters (stomatal conductance, relative water content, chlorophyll fluorescence, and photosynthetic pigments) were reduced in salinized plants. The highest reduction in fresh weight root, dry weight root, fresh weight shoot, dry weight shoot, root length, and shoot length was recorded under 150 mM NaCl by 30.2%, 51.6%, 30.5%, 24.7%, 26.4%, and 21%, respectively. In contrast, bulk potassium sulfate and K-NPs increased these parameters. Furthermore, K-NPs improved M. officinalis tolerance to NaCl toxicity by enhancing the content of osmolytes such as proline, soluble sugars, and antioxidant enzymes, improving antioxidant contents such as phenols, tannins, anthocyanins, and flavonoids; increasing total protein; and lowering stress markers in plant tissues. Given the results of the physiological, biochemical, and phytochemical parameters obtained from this study, it can be stated that K-NPs, in comparison to the conventional form of potassium fertilizer, exhibit a greater potential to mitigate damages caused by salinity stress in M. officinalis plants.

13.
Sci Total Environ ; 926: 172131, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38569953

RESUMO

Restoring freshwater flows to wetland ecosystems is an increasingly common tool for reversing saltwater intrusion/chronic salinization. Hydrologic restoration projects can deliver large volumes of sediment and fresh water to coastal basins, episodically exposing brackish and salt marsh vegetated soils to low surface water salinities. Yet little is known about the impacts of river reconnection/diversions to porewater salinity of the active root zone (0-30 cm) and salinity dependent soil biogeochemical processes like sorption. Intact soil cores from a brackish marsh site in mid-Barataria Basin, LA were subjected to a simulated river diversion opening to examine how porewater salinity and ammonium (NH4+) availability change with depth and time. Quadruplicate soil cores were inundated with continuously flowing fresh (0 salinity) water for 0, 7, or 28 d then measured for porewater salinity and NH4+ partition coefficient (exchangeable NH4+:porewater NH4+) every 2 cm for the top 10 cm of soil. Porewater salinity decreased in the 0-4 cm interval between 0 and 7 d of the simulated river diversion and increased in the 8-10 cm interval between 7 and 28 d. Overall, depth-averaged porewater salinity of the top 10 cm did not significantly change between 0 and 28 d of the simulated river diversion. Ammonium partition coefficients increased only in the 0-2 cm interval between 0 and 7 d of the simulated river diversion, likely due to freshening-induced NH4+ adsorption. These results indicate that the physicochemical environment of brackish marsh soils is relatively resistant to a single surface water freshening over one month. Models utilized by the state of Louisiana may be overpredicting freshening of the marsh soil porewater in Mid-Barataria Basin in response to the episodic operation of the Mid-Barataria Sediment Diversion. This study demonstrates the importance of measuring diffusive-adsorptive flux of major cations and anions when modeling vertical salt transfer in brackish marsh soils.

14.
Environ Sci Technol ; 58(15): 6670-6681, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38564406

RESUMO

The underlying adaptative mechanisms of anammox bacteria to salt stress are still unclear. The potential role of the anammoxosome in modulating material and energy metabolism in response to salinity stress was investigated in this study. The results showed that anammox bacteria increased membrane fluidity and decreased mechanical properties by shortening the ladderane fatty acid chain length of anammoxosome in response to salinity shock, which led to the breakdown of the proton motive force driving ATP synthesis and retarded energy metabolism activity. Afterward, the fatty acid chain length and membrane properties were recovered to enhance the energy metabolic activity. The relative transmission electron microscopy (TEM) area proportion of anammoxosome decreased from 55.9 to 38.9% under salinity stress. The 3D imaging of the anammox bacteria based on Synchrotron soft X-ray tomography showed that the reduction in the relative volume proportion of the anammoxosome and the concave surfaces was induced by salinity stress, which led to the lower energy expenditure of the material transportation and provided more binding sites for enzymes. Therefore, anammox bacteria can modulate nitrogen and energy metabolism by changing the membrane properties and morphology of the anammoxosome in response to salinity stress. This study broadens the response mechanism of anammox bacteria to salinity stress.


Assuntos
Oxidação Anaeróbia da Amônia , Bactérias , Anaerobiose , Bactérias/metabolismo , Ácidos Graxos/metabolismo , Estresse Salino , Oxirredução , Salinidade , Nitrogênio/metabolismo
15.
BMC Plant Biol ; 24(1): 232, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561659

RESUMO

BACKGROUND: Chrysanthemum, one of the four major cut flowers all over the world, is very sensitive to salinity during cultivation. DNA binding with one finger (DOF) transcription factors play important roles in biological processes in plants. The response mechanism of CmDOF18 from chrysanthemum to salt stress remains unclear. RESULTS: In this study, CmDOF18 was cloned from Chrysanthemum morifolium, and its expression was induced by salinity stress. The gene encodes a 291-amino acid protein with a typical DOF domain. CmDOF18 was localized to the nucleus in onion epidermal cells and showed transcriptional activation in yeast. CmDOF18 transgenic plants were generated to identify the role of this gene in resistance to salinity treatment. Chrysanthemum plants overexpressing CmDOF18 were more resistant to salinity stress than wild-type plants. Under salinity stress, the malondialdehyde content and leaf electrolyte conductivity in CmDOF18-overexpressing transgenic plants were lower than those in wild-type plants, while the proline content, chlorophyll content, superoxide dismutase activity and peroxidase activity were higher than those in wild-type plants. The opposite findings were observed in gene-silenced plants compared with wild-type plants. The gene expression levels of oxidoreductase increased in CmDOF18-overexpressing transgenic plants but decreased in CmDOF18-SRDX gene-silenced transgenic plants. CONCLUSION: In summary, we analyzed the function of CmDOF18 from chrysanthemum, which may regulate salinity stress in plants, possibly due to its role in the regulation of oxidoreductase.


Assuntos
Chrysanthemum , Oxirredutases , Oxirredutases/metabolismo , Tolerância ao Sal/genética , Chrysanthemum/genética , Chrysanthemum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Saccharomyces cerevisiae/metabolismo , Salinidade , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética
16.
Funct Integr Genomics ; 24(2): 70, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565780

RESUMO

Salinization is one of the leading causes of arable land shrinkage and rice yield decline, recently. Therefore, developing and utilizing salt-tolerant rice varieties have been seen as a crucial and urgent strategy to reduce the effects of saline intrusion and protect food security worldwide. In the current study, the CRISPR/Cas9 system was utilized to induce targeted mutations in the coding sequence of the OsDSG1, a gene involved in the ubiquitination pathway and the regulation of biochemical reactions in rice. The CRISPR/Cas9-induced mutations of the OsDSG1 were generated in a local rice cultivar and the mutant inheritance was validated at different generations. The OsDSG1 mutant lines showed an enhancement in salt tolerance compared to wild type plants at both germination and seedling stages indicated by increases in plant height, root length, and total fresh weight as well as the total chlorophyll and relative water contents under the salt stress condition. In addition, lower proline and MDA contents were observed in mutant rice as compared to wild type plants in the presence of salt stress. Importantly, no effect on seed germination and plant growth parameters was recorded in the CRISRP/Cas9-induced mutant rice under the normal condition. This study again indicates the involvement of the OsDSG1 gene in the salt resistant mechanism in rice and provides a potential strategy to enhance the tolerance of local rice varieties to the salt stress.


Assuntos
Oryza , Tolerância ao Sal , Tolerância ao Sal/genética , Sistemas CRISPR-Cas , Oryza/metabolismo , Estresse Salino , Mutação
18.
Front Plant Sci ; 15: 1351008, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38576780

RESUMO

Proanthocyanidins (PAs) and anthocyanins are flavonoids that contribute to the quality and health benefits of grapes and wine. Salinity affects their biosynthesis, but the underlying mechanism is still unclear. We studied the effects of NaCl stress on PA and anthocyanin biosynthesis in grape suspension cells derived from berry skins of Vitis vinifera L. Cabernet Sauvignon using metabolite profiling and transcriptome analysis. We treated the cells with low (75 mM NaCl) and high (150 mM NaCl) salinity for 4 and 7 days. High salinity inhibited cell growth and enhanced PA and anthocyanin accumulation more than low salinity. The salinity-induced PAs and anthocyanins lacked C5'-hydroxylation modification, suggesting the biological significance of delphinidin- and epigallocatechin-derivatives in coping with stress. The genes up-regulated by salinity stress indicated that the anthocyanin pathway was more sensitive to salt concentration than the PA pathway, and WGCNA analysis revealed the coordination between flavonoid biosynthesis and cell wall metabolism under salinity stress. We identified transcription factors potentially involved in regulating NaCl dose- and time-dependent PA and anthocyanin accumulation, showing the dynamic remodeling of flavonoid regulation network under different salinity levels and durations. Our study provides new insights into regulator candidates for tailoring flavonoid composition and molecular indicators of salt stress in grape cells.

19.
Environ Geochem Health ; 46(5): 148, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578547

RESUMO

A slight variation in ecological milieu of plants, like drought, heavy metal toxicity, abrupt changes in temperature, flood, and salt stress disturbs the usual homeostasis or metabolism in plants. Among these stresses, salinity stress is particularly detrimental to the plants, leading to toxic effects and reduce crop productivity. In a saline environment, the accumulation of sodium and chloride ions up to toxic levels significantly correlates with intracellular osmotic pressure, and can result in morphological, physiological, and molecular alterations in plants. Increased soil salinity triggers salt stress signals that activate various cellular-subcellular mechanisms in plants to enable their survival in saline conditions. Plants can adapt saline conditions by maintaining ion homeostasis, activating osmotic stress pathways, modulating phytohormone signaling, regulating cytoskeleton dynamics, and maintaining cell wall integrity. To address ionic toxicity, researchers from diverse disciplines have explored novel approaches to support plant growth and enhance their resilience. One such approach is the application of nanoparticles as a foliar spray or seed priming agents positively improve the crop quality and yield by activating germination enzymes, maintaining reactive oxygen species homeostasis, promoting synthesis of compatible solutes, stimulating antioxidant defense mechanisms, and facilitating the formation of aquaporins in seeds and root cells for efficient water absorption under various abiotic stresses. Thus, the assessment mainly targets to provide an outline of the impact of salinity stress on plant metabolism and the resistance strategies employed by plants. Additionally, the review also summarized recent research efforts exploring the innovative applications of zinc oxide nanoparticles for reducing salt stress at biochemical, physiological, and molecular levels.


Assuntos
Óxido de Zinco , Estresse Salino , Estresse Fisiológico , Reguladores de Crescimento de Plantas/farmacologia , Antioxidantes/metabolismo , Salinidade
20.
Plants (Basel) ; 13(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38611480

RESUMO

Under salinity conditions, growth and productivity of grain crops decrease, leading to inhibition and limited absorption of water and elements necessary for plant growth, osmotic imbalance, ionic stress, and oxidative stress. Microorganisms in bio-fertilizers have several mechanisms to provide benefits to crop plants and reduce the harmful effect of salinity. They can be effective in dissolving phosphate, fixing nitrogen, promoting plant growth, and can have a combination of all these qualities. During two successful agricultural seasons, two field experiments were conducted to evaluate the effect of bio-fertilizer applications, including phosphate solubilizing bacteria (PSB), nitrogen fixation bacteria and a mix of phosphate-solubilizing bacteria and nitrogen fixation bacteria with three rates, 50, 75 and 100% NPK, of the recommended dose of minimal fertilizer on agronomic traits, yield and nutrient uptake of barley (Hordeum vulgare) under saline condition in Village 13, Farafra Oasis, New Valley Governorate, Egypt. The results showed that the application of Microbein + 75% NPK recorded the highest values of plant height, spike length, number of spikes/m2, grain yield (Mg ha-1), straw yield (Mg ha-1), biological yield (Mg ha-1), protein content %, nitrogen (N), phosphorus (P), potassium (K) uptakes in grain and straw (kg ha-1), available nitrogen (mg/kg soil), available phosphorus (mg/kg soil), total microbial count of soil, antioxidant activity of soil (AOA), dehydrogenase, nitrogen fixers, and PSB counts. The application of bio-fertilizers led to an increase in plant tolerance to salt stress, plant growth, grain yield, and straw yield, in addition to the application of the bio-fertilizers, which resulted in a 25% saving in the cost of mineral fertilizers used in barley production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...